Real-Time News Recommender System
نویسندگان
چکیده
In this demo we present a robust system for delivering real-time news recommendation to the user based on the user’s history of the past visits to the site, current user’s context and popularity of stories. Our system is running live providing real-time recommendations of news articles. The system handles overspecializing as we recommend categories as opposed to items, it implicitly uses collaboration by taking into account user context and popular items and, it can handle new users by using context information. A unique characteristic of our system is that it prefers freshness over relevance, which is important for recommending news articles in real-world setting as addressed here. We experimentally compare the proposed approach as implemented in our system against several state-of-the-art alternatives and show that it significantly outperforms them.
منابع مشابه
Optimizing and Evaluating Stream-based News Recommendation Algorithms
Due to the overwhelming amount of items and information users need support in finding the information matching the individual preferences and expectations. Real-time stream-based recommender systems get in the focus of research allowing the adaption of recommendations to the user’s context and the current set of relevant items. In this paper we focus on recommending news articles. In contrast t...
متن کاملOptimizing a Scalable News Recommender System
The huge amount of news articles published every hour makes it hard for users to find the relevant news matching the user’s expectations. The main challenges when developing a recommender for the news domain are the continuous changes in the set of items, the contextdependent relevance of items, as well as the requirements with respect to scalability and response time. In this work, we present ...
متن کاملReal-time News Recommendations using Apache Spark
Recommending news articles is a challenging task due to the continuous changes in the set of available news articles and the contextdependent preferences of users. Traditional recommender approaches are optimized for analyzing static data sets. In news recommendation scenarios, characterized by continuous changes, high volume of messages, and tight time constraints, alternative approaches are n...
متن کاملDevelopment of a News Recommender System based on Apache Flink
The amount of data on the web is constantly growing. The separation of relevant from less important information is a challenging task. Due to the huge amount of data available in the World Wide Web, the processing cannot be done manually. Software components are needed that learn the user preferences and support users in finding the relevant information. In this work we present our recommender ...
متن کاملAn Effective Algorithm in a Recommender System Based on a Combination of Imperialist Competitive and Firey Algorithms
With the rapid expansion of the information on the Internet, recommender systems play an important role in terms of trade and research. Recommender systems try to guess the user's way of thinking, using the in-formation of user's behavior or similar users and their views, to discover and then propose a product which is the most appropriate and closest product of user's interest. In the past dec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010